XI, LIU

Address: 114 Spring Forest Drive, Central, SC, U.S.

Contact Info: (+01) 3802495112 | xiliu8006@gmail.com

Google scholar Homepage

EDUCATION BACKGROUND

Clemson University, SC, U.S.

Jan. 2024 - Now

• **Degree:** PhD (Advised by Prof. Siyu Huang)

• Major: Computer Science

University of Copenhagen, Copenhagen, Danmark

Sept. 2021 - Jul. 2023

• Degree: Master of Science (Advised by Prof. Serge Belongie)

• Major: Computer Science

Jilin University, Changchun, China

Sept. 2014 - Jul. 2018

• Degree: Bachelor of Science

• Major: Computer Science and Technology

RESEARCH EXPERIENCE

Publications

- 3DGS-Enhancer: Enhancing Unbounded 3D Gaussian Splatting with View-consistent 2D Diffusion Priors (NeurIPS 2024 Spotlight) (First author).
- Latent Radiance Fields with 3D-aware 2D Representations (ICLR 2025) (First coauthor).
- Bézier Splatting for Fast and Differentiable Vector Graphics (Arxiv, 2025.03) (First author).
- Geospecific View Generation Geometry-Context Aware High-resolution Ground View Inference from Satellite Views (2024 ECCV oral) (Not in author list but highly related, done at OSU).

Affiliated Researcher in Pioneer Center for AI, advised by Prof. Serge Belongie

Aug. 2022 - Aug. 2023

Master research project

- 3D deformable object reconstruction from monocular video
- 3D model (Neural Radiance Field) generation with the guidance of generative models (stable diffusion)

Research Assistant, CPII, CUHK, mentored by Prof. Dahua Lin

Jan. 2021 - Aug. 2021

OpenMMLab-MMdetection3D

- Supported open-source project OpenMMLab/MMDetection3D (5k stars).
- Reimplemented state-of-the-art 3D Point Cloud Detection algorithms.
- Solved the issues from communities and shared coding experiences to the new users.

WORK EXPERIENCE

Lidar Perception R&D Engineer, Momenta

Sept. 2018 - Mar. 2020

Lidar perception algorithms

- Focused on the real-time lidar object detection using a fast end-to-end deep learning network with inference latency low than 30ms.
- Combined the rule-based lidar detection algorithms with deep learning-based lidar detection algorithms to improve the recall in lidar detection task.

Lidar perception architecture design

- Architected and implemented a multi-thread lidar perception system in C++ to run the lidar perception tasks steadily and efficiently in the ROS environment.
- Deployed PyTorch Models on the autonomous driving vehicle, including converting Pytorch Python Models to TorchScript Models in C++.

Real-time object tracking in point clouds

- Developed an object-tracking algorithm that enables the tracker to calculate the extremely accurate transformation of the same object between two frames, even if the object is a sparse point cloud.
- Proposed an adaptive method of estimating the point cloud object distribution, which has 2x-5x lower runtime and only have an extremely slight drop in accuracy.

HONORS&AWARDS

College Excellent Student, Computer Science Department, Jilin University	Sept. 2017 - Jun. 2018
Honorable Mention, Mathematical Contest in Modeling (MCM)	Apr. 2017
Second Prize, Mathematical Contest in Modeling, Jilin, China	May. 2016
Second Prize Scholarship, Computer Science Department, Jilin University	Sept. 2015 - Jul. 2016

SKILLS

- Tools: PyTorch/libtorch, ROS (Robot Operating System), PCL (Point Cloud Library), Github.
- **Programming language:** C/C++, Python, CUDA, Haskell, Erlang.